Mice deleted for the DiGeorge/velocardiofacial syndrome region show abnormal sensorimotor gating and learning and memory impairments.
نویسندگان
چکیده
Del22q11 syndrome is caused by heterozygous deletion of an approximately 3 Mb segment of chromosome 22q11.2. Children diagnosed with del22q11 syndrome commonly have learning difficulties, deficits of motor development, cognitive defects and attention deficit disorder. They also have a higher than normal risk for developing psychiatric disorders, mainly schizophrenia, schizoaffective disorder and bipolar disorder. Here, we show that mice that are heterozygously deleted for a subset of the genes that are deleted in patients have deficits in sensorimotor gating and learning and memory. The finding of sensorimotor gating deficits is particularly significant because patients with schizophrenia and schizotypal personality disorder show similar deficits. Thus, our deletion mouse models at least two major features of the del22q11-associated behavioral phenotype, and as such, represents an animal model of this complex behavioral phenotype. These findings not only open the way to pharmacological analyses that may lead to improved treatments, but also to the identification of gene/s that modulate these specific behaviors in humans.
منابع مشابه
Deletion of 150 kb in the minimal DiGeorge/velocardiofacial syndrome critical region in mouse.
Deletions or rearrangements of human chromosome 22q11 lead to a variety of related clinical syndromes such as DiGeorge syndrome (DGS) and velo--cardiofacial syndrome (VCFS). In addition, patients with 22q11 deletions have an increased incidence of schizophrenia and several studies have mapped susceptibility loci for schizophrenia to this region. Human molecular genetic studies have so far faile...
متن کاملFunctional analysis of Gscl in the pathogenesis of the DiGeorge and velocardiofacial syndromes.
Gscl encodes a Goosecoid-related homeodomain protein that is expressed during mouse embryogenesis. In situ hybridization and immunohistochemistry studies show that Gscl is expressed in the pons region of the developing central nervous system and primordial germ cells. Gscl expression is also detected in a subset of adult tissues, including brain, eye, thymus, thyroid region, stomach, bladder an...
متن کاملGoosecoid-like (Gscl), a candidate gene for velocardiofacial syndrome, is not essential for normal mouse development.
Velocardiofacial syndrome (VCFS) and DiGeorge syndrome (DGS) are characterized by a wide spectrum of abnormalities, including conotruncal heart defects, velopharyngeal insufficiency, craniofacial anomalies and learning disabilities. In addition, numerous other clinical features have been described, including frequent psychiatric illness. Hemizygosity for a 1.5-3 Mb region of chromosome 22q11 ha...
متن کاملNormal cardiovascular development in mice deficient for 16 genes in 550 kb of the velocardiofacial/DiGeorge syndrome region.
Hemizygous interstitial deletions in human chromosome 22q11 are associated with velocardiofacial syndrome and DiGeorge syndrome and lead to multiple congenital abnormalities, including cardiovascular defects. The gene(s) responsible for these disorders is thought to reside in a 1.5-Mb region of 22q11 in which 27 genes have been identified. We have used Cre-mediated recombination of LoxP sites i...
متن کاملA novel atypical 22q11.2 distal deletion in father and son.
Interstitial deletions of chromosome 22q11.2 are associated with several birth defects and malformations, which include DiGeorge, velocardiofacial, and conotruncal anomaly face syndromes. These were all initially described as separate entities, but are now considered to be part of the spectrum of the same condition. The CATCH22 acronym was proposed to encompass this phenotypic variability, but ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 10 23 شماره
صفحات -
تاریخ انتشار 2001